Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C2.C42

Direct product G=N×Q with N=C2 and Q=C2×C2.C42
dρLabelID
C22×C2.C42128C2^2xC2.C4^2128,998


Non-split extensions G=N.Q with N=C2 and Q=C2×C2.C42
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C2.C42) = C4×C2.C42central extension (φ=1)128C2.1(C2xC2.C4^2)128,164
C2.2(C2×C2.C42) = C2×C22.7C42central extension (φ=1)128C2.2(C2xC2.C4^2)128,459
C2.3(C2×C2.C42) = C24.17Q8central stem extension (φ=1)64C2.3(C2xC2.C4^2)128,165
C2.4(C2×C2.C42) = C24.625C23central stem extension (φ=1)128C2.4(C2xC2.C4^2)128,167
C2.5(C2×C2.C42) = C23.28C42central stem extension (φ=1)64C2.5(C2xC2.C4^2)128,460
C2.6(C2×C2.C42) = C23.29C42central stem extension (φ=1)64C2.6(C2xC2.C4^2)128,461
C2.7(C2×C2.C42) = C2×C4.9C42central stem extension (φ=1)32C2.7(C2xC2.C4^2)128,462
C2.8(C2×C2.C42) = C2×C4.10C42central stem extension (φ=1)32C2.8(C2xC2.C4^2)128,463
C2.9(C2×C2.C42) = C2×C426C4central stem extension (φ=1)32C2.9(C2xC2.C4^2)128,464
C2.10(C2×C2.C42) = C24.63D4central stem extension (φ=1)32C2.10(C2xC2.C4^2)128,465
C2.11(C2×C2.C42) = C2×C22.4Q16central stem extension (φ=1)128C2.11(C2xC2.C4^2)128,466
C2.12(C2×C2.C42) = C24.132D4central stem extension (φ=1)64C2.12(C2xC2.C4^2)128,467
C2.13(C2×C2.C42) = C24.152D4central stem extension (φ=1)64C2.13(C2xC2.C4^2)128,468
C2.14(C2×C2.C42) = C2×C4.C42central stem extension (φ=1)64C2.14(C2xC2.C4^2)128,469
C2.15(C2×C2.C42) = C24.7Q8central stem extension (φ=1)32C2.15(C2xC2.C4^2)128,470
C2.16(C2×C2.C42) = C2×C23.9D4central stem extension (φ=1)32C2.16(C2xC2.C4^2)128,471
C2.17(C2×C2.C42) = C24.162C23central stem extension (φ=1)32C2.17(C2xC2.C4^2)128,472
C2.18(C2×C2.C42) = C2×C22.C42central stem extension (φ=1)64C2.18(C2xC2.C4^2)128,473
C2.19(C2×C2.C42) = C23.15C42central stem extension (φ=1)32C2.19(C2xC2.C4^2)128,474
C2.20(C2×C2.C42) = C2×M4(2)⋊4C4central stem extension (φ=1)32C2.20(C2xC2.C4^2)128,475

׿
×
𝔽